If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+4w=0
a = 10; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*10}=\frac{-8}{20} =-2/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*10}=\frac{0}{20} =0 $
| 7+5x-1=12 | | 1.6+7.6-5(k=1.1) | | 6+7.6-5(k=1.1) | | b/9+1/4=13 | | 5y−8=9+4(y−7) | | 3(w-1)-7=-2(-4w+6)-w | | 21/(4+2x)=x | | -11.2=4(2.1=q)+-0.8 | | 6(x+5)+2=8 | | -700=-5(11x+19) | | 5x-2x+1=2 | | 5(x-6)+2=-53 | | 14+8=-x+5 | | 7.6m+9.66=-3.26 | | -6x+7x-6x=5x | | 4(3a-2)=0 | | 8k2+25k+3=0 | | -5(11x-2)=450 | | 1/5x=625 | | 405=5(-8x-7) | | 3x-6=-4+8x | | 4+n+6=16 | | 2x-6×+1=5 | | 37-w=196 | | 17(c-73)=16,150 | | y=1200(.94)^10 | | 5(2+6)=8x+48 | | 27y-46=170 | | 680=8(-9x+22) | | -6=14-11n;2 | | 15/4x-15=33/4-x | | 10(x-8)(5x+3)=0 |